High carrier mobility in single ultrathin colloidal lead selenide nanowire field effect transistors.
نویسندگان
چکیده
Ultrathin colloidal lead selenide (PbSe) nanowires with continuous charge transport channels and tunable bandgap provide potential building blocks for solar cells and photodetectors. Here, we demonstrate a room-temperature hole mobility as high as 490 cm(2)/(V s) in field effect transistors incorporating single colloidal PbSe nanowires with diameters of 6-15 nm, coated with ammonium thiocyanate and a thin SiO(2) layer. A long carrier diffusion length of 4.5 μm is obtained from scanning photocurrent microscopy (SPCM). The mobility is increased further at lower temperature, reaching 740 cm(2)/(V s) at 139 K.
منابع مشابه
Room-temperature quantum confinement effects in transport properties of ultrathin Si nanowire field-effect transistors.
Quantum confinement of carriers has a substantial impact on nanoscale device operations. We present electrical transport analysis for lithographically fabricated sub-5 nm thick Si nanowire field-effect transistors and show that confinement-induced quantum oscillations prevail at 300 K. Our results discern the basis of recent observations of performance enhancement in ultrathin Si nanowire field...
متن کاملGate-dependent carrier diffusion length in lead selenide quantum dot field-effect transistors.
We report a scanning photocurrent microscopy (SPCM) study of colloidal lead selenide (PbSe) quantum dot (QD) thin film field-effect transistors (FETs). PbSe QDs are chemically treated with sodium sulfide (Na2S) and coated with amorphous alumina (a-Al2O3) by atomic layer deposition (ALD) to obtain high mobility, air-stable FETs with a strongly gate-dependent conductivity. SPCM reveals a long pho...
متن کاملSe-doping dependence of the transport properties in CBE-grown InAs nanowire field effect transistors
We investigated the transport properties of lateral gate field effect transistors (FET) that have been realized by employing, as active elements, (111) B-oriented InAs nanowires grown by chemical beam epitaxy with different Se-doping concentrations. On the basis of electrical measurements, it was found that the carrier mobility increases from 103 to 104 cm2/(V × sec) by varying the ditertiarybu...
متن کاملTransport properties of InAs nanowire field effect transistors: The effects of surface states
It is shown that interface trap states have pronounced effects on carrier transport and parameter extraction from top-gated InAs nanowire field effect transistors NWFETs . Due to slow surface state charging and discharging, the NWFET characteristics are time dependent with time constants as long as 45 s. This is also manifested in a time-dependent extrinsic transconductance that severely affect...
متن کاملAmbipolar, low-voltage and low-hysteresis PbSe nanowire field-effect transistors by electrolyte gating.
Semiconductor nanowire field-effect transistors (FETs) are interesting for fundamental studies of charge transport as well as possible applications in electronics. Here, we report low-voltage, low-hysteresis and ambipolar PbSe nanowire FETs using electrolyte-gating with ionic liquids and ion gels. We obtain balanced hole and electron mobilities at gate voltages below 1 V. Due to the large effec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nano letters
دوره 12 8 شماره
صفحات -
تاریخ انتشار 2012